面面垂直证明线面垂直(推出线面垂直的原理)
这篇文章给大家聊聊关于面面垂直证明线面垂直,以及推出线面垂直的原理对应的知识点,希望对各位有所帮助,不要忘了收藏本站哦。
线面垂直怎么推出面面垂直
线线垂直→线面垂直如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面.
线面垂直→面面垂直如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
反正“必须有两条相交直线都平行平面,所以线面平行不能直接推出面面平行;只要在平面内找一条直线与另一平面垂直即可,所以线面垂直可以直接推出面面垂直。”
如何用面面垂直证明线面垂直
如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
已知:α⊥β,α∩β=l,O∈l,OP⊥l,OP⊂α。
求证:OP⊥β。
证明:过O在β内作OQ⊥l,则由二面角知识可知∠POQ是二面角α-l-β的平面角。
∵α⊥β
∴∠POQ=90°,即OP⊥OQ
∵OP⊥l,l∩OQ=O,l⊂β,OQ⊂β
∴OP⊥β
扩展资料:
性质定理:
性质定理1:如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。
性质定理2:经过空间内一点,有且只有一条直线垂直已知平面。
性质定理3:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。
性质定理4:垂直于同一平面的两条直线平行。
推论:空间内如果两条直线都与第三条直线平行,那么这两条直线平行。(该推论意味着平行线的传递性不仅在平面几何上,在空间几何上也成立。)
由性质定理2可知,过空间内一点(无论是否在已知平面上),有且只有一条直线与平面垂直。下面就讨论如何作出这条唯一的直线。
1、点在平面外:
设点P是平面α外的任意一点,求作一条直线PQ使PQ⊥α。
作法:
①在α内任意作一条直线l,并过P作PA⊥l,垂足为A。
此时,若PA⊥α,则所需PQ已作出;若不是这样,
②在α内过A作m⊥l。
③过P作PQ⊥m,垂足为Q,则PQ是所求直线。
证明:
由作法可知,l⊥PA,l⊥QA
∵PA∩QA=A
∴l⊥平面PQA
∴PQ⊥l
又∵PQ⊥m,且m∩l=A,m⊂α,l⊂α
∴PQ⊥α
2、点在平面内:
设点P是平面α内的任意一点,求作一条直线PQ使PQ⊥α。
作法:
①过平面外一点A作AB⊥α,作法见上。
②过P作PQ∥AB,PQ是所求直线。
证明:
由性质定理3可知,若作出了AB⊥α,PQ∥AB,那_PQ⊥α。
参考资料来源:百度百科-面面垂直
面面垂直能推出线面垂直吗
由面面垂直推出线线垂直的方法是:由面面垂直可知,在其中一平面内垂直两面交线的直线垂直另一平面,得垂直其内所有直线,从而得出线线垂直,此外,由面面垂直还可以推出以下几个内容:
1、如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
2、如果两个平面垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内。
3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
4、三个两两垂直的平面的交线两两垂直。
关于面面垂直证明线面垂直和推出线面垂直的原理的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
本文来源网络