1. 主页 > 营销分享

分式方程的解法(分式的运算解题技巧)

分式方程的解法(分式的运算解题技巧)

分式方程的解法是什么

一、因式分解法:

因式分解法就是将分式方程中的各分式或部分分式的分子、分母分解因式,从而简化解题过程。

解:

将各分式的分子、分母分解因式,得

∵x-1≠0,∴两边同乘以x-1,得

检验知,它们都是原方程的根。所以,原方程的根为x1=-1,x2=0。

二、配方法:

配方法就是先把分式方程中的常数项移到方程的左边,再把左边配成一个完全平方式,进而可以用直接开平方法求解。

∴x2±6x+5=0

解这个方程,得x=±5,或x=±1。

检验知,它们都是原方程的根。所以,原方程的根是x1=5,x2=-5,x3=1,x4=-1。

扩展资料:

如果分式本身约分了,也要代入进去检验。

在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。

一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。

参考资料来源:百度百科-分式方程

分式方程解法

分式方程的解法:

第一步,去分母,方程两边同乘各分母的最简公分母,解3÷(x+1)=5÷(x+3)。同乘(x+1)(x+3)就可以去掉分母了。

第二步,去括号,系数分别乘以括号里的数。

第三步,移项,含有未知数的式子移动到方程左边,常数移动到方程右边。

第四步,合并同类项

第五步,系数化为1,方程的基本性质就是同时乘以或除以一个数,方程不变,和天平一样的。这里除以-2。

第六步,检验,把方程的解代入分式方程,检验是否正确。

解分式方程的方法:

分式方程的解题思想:基本思想是把分式方程化为整式方程,解出整式方程后,再把整式方程的解代入原方程检验,确定是否是原分式方程的解。

分式方程转化为整式方程的基本方法:一、将方程两边都乘各分母的最简公分母;二、换元法。

由于把分式方程转化为整式方程后,有时会产生不适合原方程的增根,所以解分式方程一定要检验,把不符合方程的根舍去。对于含有字母系数的方程,要根据字母系数的限制条件,对字母的取值进行分类讨论,然后表示方程的解。

扩展资料:

解分式方程注意事项:

1、注意去分母时,不要漏乘整式项。

2、増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。

3、増根使最简公分母等于0。

4、分式方程中,如果x为分母,则x应不等于0。

数学分式方程公式是什么

分式方程的解法:

:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程)

;②按解整式方程的步骤(移项,合并同类项,系数化为1)求出未知数的值

;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根是曾根,则原方程无解。

如果分式本身约了分,也要带进去检验。

在列分式方程解应用题时,不仅要检验所的解是否满足方程式,还要检验是否符合题意

因式分解

1提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

运用公式法

①平方差公式:.

a^2-b^2=(a+b)(a-b)

②完全平方公式:

a^2±2ab+b^2=(a±b)^2

③立方和公式:a^3+b^3=

(a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3=

(a-b)(a^2+ab+b^2).

④完全立方公式:

a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]

a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

3分组分解法:把一个多项式分组后,再进行分解因式的方法.

4拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形

十字相乘法

①x^2+(p

q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解:

x^2+(p

q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m

时,那么

kx^2+mx+n=(ax

b)(cx

d)

a

\-----/b

ac=k

bd=n

c

/-----\d

ad+bc=m

例如

把x^2-x-2=0分解因式

因为x^2=x乘x

-2=-2乘1

x

-2

x

1

对角线相乘再加=x-2x=-x

横着写(x-2)(x+1)

什么是分式方程的解

分式方程分母里含有未知数的方程叫做分式方程。

分式方程的解法:

①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);

②按解整式方程的步骤求出未知数的值;

③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。

解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。

扩展资料

解题步骤:

①去分母

方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数时,不要忘了改变符号。

②按解整式方程的步骤

移项,若有括号应去括号,注意变号,合并同类项,把系数化为1,求出未知数的.值。

③验根

求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。

验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。

本文来源网络